
0272-1716/00/$10.00 © 2000 IEEE

Feature Article

IEEE Computer Graphics and Applications 67

One of the main functions of graphic dis-
plays is drawing straight lines. To draw

lines quickly, the speed of the applied algorithm is crit-
ical. The following three different approaches exist:

� discrete differential analysis (DDA), introduced by
Bresenham,1

� combinatory analysis,2 and
� linguistic methods.3,4

The most famous approach remains the DDA, since
extended by N-step algorithms. Here, we focus on this
class of algorithms. Since three N-step algorithms have
been published (N = 25, N = 36, N = 47), we analyzed
them, studying only their time complexity because they
compute the same approximation of the continuous line.
Our analysis shows that improvements are small and
don’t support our objectives for speed.

We propose a new algorithm that uses other proper-
ties, some of them already presented.8 We also compare
the performances of these algorithms and present the
theoretical analysis and benchmarks that prove the new
algorithm is at least twice as fast as earlier ones.

Before discussing these algorithms in more detail, we
introduce additional notations used throughout the
article:

� “Line” denotes the discrete straight segment between
two points P(xp, yp) and Q(xq, yq), and

� (u, v) describes the slope of lines u = xq − xp and
v = yq − yp.

Since the coordinates of P and Q are integers, the seg-
ment is an exact translation of line (0, 0)(u, v). A line
may be given by a set of points or by its first point and a
set of moves. For slope (u, v), the set of moves is always
composed using two different codes. In the first octant,
the codes are

� X, representing an axial move, and
� D, representing a diagonal move.

N-step techniques
N-step algorithms use the DDA method. The main

idea is to choose one pattern (a set of points) among dif-
ferent possible patterns. A succession of tests that com-
pare predefined values and a term E realize this choice.
Iterating this process determines the set of patterns com-
posing the straight line.

A simple operation—number of
iterations × number of instructions
per loop—gives the time complexi-
ty. Let N be the number of points of
one pattern. Let C be the number of
possible patterns. Inside an itera-
tion, let t be the number of tests, a
the number of additions, and i the
number of increments of E.

One operation (a sign test) real-
izes one of the tests; two operations
(an addition and a sign test) realize
the others.

For a given slope, the process is
iterated p times (p = u/N). Each
instruction (increment, sign test,
addition) should take one unit of
time. We calculate the theoretical evaluation perfor-
mance (TEP) by

TEP = p(i + a + t)

According to the chosen pattern, values i, t, and a may
change.

We analyzed the worst and the best pattern cases.
Based on an unproved equiprobability of all patterns,
an average case completes the analysis.

We used four N-step algorithms: Bresenham’s algo-
rithm1 (N = 1), the double-step5 (N = 2), the triple-step6

(N = 3), and the quad-step7 (N = 4). For each algorithm
we summarize the theoretical analysis in a table. All of
these algorithms compute the line in a limited subset of
the plane, mainly the octant or a subset of it. Through-
out the article we call this limitation workspace.

Our new N-step algorithm

for computing straight lines

automatically chooses the N

value. Benchmarks prove

that the algorithm is at least

twice as fast as those

currently in use.

Vincent Boyer and Jean-Jacques Bourdin
Paris 8 University

Auto-Adaptive Step
Straight-Line
Algorithm

N = 1
Bresenham’s straight-line algorithm1 uses the DDA

method and can be considered an N-step (N = 1) algo-
rithm. In the first octant the possible patterns are X and
D, so C = 2. Table 1 lists the results of this analysis.

N = 2
Rokne et al.5 consider the two hexadecants (half of

an octant) separately. We present the analysis for the
first one. In this workspace the possible patterns are XX,
XD, and DX, so C = 3 (see Figure 1). The double-step
algorithm presents an average speedup of 15-percent
on Bresenham’s method (see Table 2).

N = 3
In the first hexadecant, the different possible patterns

are XXX, DXD, XXD, XDX, and DXX, so C = 5. The triple-
step algorithm presents an average speedup of 20 per-
cent on Bresenham’s method (see Table 3).

N = 4
In the quad-step algorithm7 the octant is divided into

six parts. The average workspace is one sixth of the
octant. C always equals 5. The tests used for the choice
of the workspace aren’t included in the analysis. The
quad-step algorithm presents an average speedup of 30
percent on Bresenham’s method (see Table 4).

The main idea of these algorithms is to increase N to
reduce the number of instructions and therefore the
complexity. The main flaw of this analysis is that when-
ever N increases, C and the number of instructions
increase. In addition, the performance improvement is
often overestimated. For example, the double-step algo-
rithm is considered to be two times faster than Bresen-
ham’s algorithm, but analysis and tests show only a 15
percent speedup.

Auto-adaptive step algorithm
Our new algorithm, shown in Figure 2, uses the fol-

lowing properties:

1. All lines can be computed in the first half of the first
octant (the hexadecant). Hereafter, we consider the
lines to be in this hexadecant.

2. In the first hexadecant, a line is composed of axial
moves X separated by one and only one diagonal
move D:

where Xn denotes n times pattern X, and nj is the
length of the jth step.

3. The length of the step is almost constant. If
and B = A − 1, then

∀j ∈]2, m − 1 [, nj ∈ {A, B}

Moreover n1 + nm ∈ {A,B}. Consequently, values n1 and
nm are calculated separately. In the first hexadecant we

 A nj
m

j= =
−max ()2

1

 L
n n n n nm m= −X DX DX D X DX D1 2 3 1K

Feature Article

68 September/October 2000

Table 1. Analysis of the single-step algorithm.

Cases t a i p TEP

Best 1 0 1 u 2u
Worst 1 0 1 u 2u
Average 1 0 1 u 2u

Table 2. Analysis of the double-step algorithm.

Cases t a i p TEP

Best 1 0 1 u/2 u
Worst 2 1 1 u/2 2u
Average 5/3 2/3 1 u/2 5u/3

Table 5. Analysis of the AAS algorithm.

Cases t a i p TEP

Best 1 0 1 v 2v
Worst 1 0 1 v 2v
Average 1 0 1 v 2v

Table 4. Analysis of the quad-step algorithm.

Cases t a i p TEP

Best 1 0 1 u/4 u/2
Worst 4 3 1 u/4 2u
Average 14/5 9/5 1 u/4 7u/5

XX XD DX

1 Possible patterns of the double-step algorithm.

if (E>0) then
pattern = XA; E+=inc_XA;

else
pattern = XB; E+=inc_XB;

Figure 2. Auto-adaptive step algorithm.

A B

3 Example of patterns XA and XB.

Table 3. Analysis of the triple-step algorithm.

Cases t a i p TEP

Best 1 0 1 u/3 2u/3
Worst 4 3 1 u/3 8u/3
Average 14/5 1 1 u/3 8u/5

IEEE Computer Graphics and Applications 69

have A = (u − v)/v. An iteration consists in choosing one
of two different patterns, XA and XB (C = 2). Figure 3 pre-
sents an example with A = 5 and B = 4. A simple sign
test (see Figure 2) helps with the choosing. Table 5 pre-
sents the analysis of the auto-adaptive step (AAS) algo-
rithm. Note that with this method the number of
iterations p equals the number of Ds that are v. In the first
hexadecant v < u/2; therefore the speedup is at least 2.

Performances
We’ve implemented and tested these algorithms so

that we can compare them. We computed every line,
starting from (0, 0) and ending in the first hexadecant.
The Max value corresponds to the maximal length of
the lines. We tested all five algorithms.

Table 6 presents the times (in seconds) obtained by
the total time field of the Unix profile program. We used
a Compaq Professional Workstation XP1000 with a 500-
MHz Alpha 21264 CPU to realize these benchmarks. The
percent value is the ratio between the current algorithm
and Bresenham’s algorithm.

Conclusion
The AAS algorithm to compute straight lines improves

Bresenham’s DDA and the N-step algorithms. It deter-
mines the better step according to the slope of the line.
The number of instructions remains constant per itera-
tion. Like Bresenham’s, this method always chooses one
pattern from two possible patterns. Moreover, like the
other N-step algorithms, the step’s length increases, and
the number of iterations decreases with it. Both the the-
oretical evaluations and the benchmarks prove that this
new method is more efficient than previous ones. �

References
1. J.E. Bresenham, “Algorithm for Computer Control of a Dig-

ital Plotter,” IBM System J., Vol. 4, No. 1, 1965, pp. 25-30.
2. C.M.A. Castle and M.L.V. Pitteway, “An Application of

Euclid’s Algorithm to Drawing Straight Lines,” Funda-
mental Algorithms in Computer Graphics, Springer-Verlag,
Berlin, 1985, pp. 135-139.

3. R. Brons, “Linguistic Methods for Description of a Straight
Line on a Grid,” Computer Graphics and Image Processing
(CGIP), Vol. 3, 1974, pp. 48-62.

4. L. Wu, “On the Chain Code of a Line,” IEEE Trans. Patterns
Analysis and Machine Intelligence (PAMI), Vol. 4, No. 3,
1982, pp. 347-353.

5. J.G. Rokne, B. Wyvill, and X. Wu, “Fast Line Scan Con-
version,” ACM Trans. Graphics, Vol. 9, No. 4, Oct. 1990,
pp. 376-388.

6. P. Graham and S.S. Iyengar, “Double and Triple Step Incre-
mental Generation of Lines,” IEEE Computer Graphics and
Applications, Vol. 14, No. 3, May 1994, pp. 49-53.

7. G. Gill, “N-Step Incremental Straight-Line Algorithms,”
IEEE Computer Graphics and Applications, Vol. 14, No. 3,
May 1994, pp. 66-72.

8. V. Boyer and J.-J. Bourdin, “Fast Lines: a Span by Span
Method,” Proc. Eurographics 99, Computer Graphics Forum
Series, Blackwell Publishers, Oxford, U.K., Vol. 18, No. 3,
Sept. 1999, pp. 377-384.

Vincent Boyer is a PhD student in
the Computer Science Department at
Paris 8 University. His research inter-
est is in high-performance algo-
rithms and, particularly, fast 2D
primitives. He introduced a new
model for color shading and

improved the methods for the generation of nonparamet-
ric curves, antialiasing computation, and 3D discrete lines
computation. He is a member of the Group for Research in
Image Synthesis (GRIS).

Jean-Jacques Bourdin is an
assistant professor in the Computer
Science Department of Paris 8 Uni-
versity. He founded the GRIS, a group
that focuses on fast algorithms for
paint boxes. His academic interest is
to lead students from the undergrad-

uate level to a PhD thesis. Bourdin received a PhD in com-
puter science from Bordeaux University and a French
postdoctoral degree (HDR) from Paris 8 University. He is
a member of ACM and, Eurographics, and serves on the
AFIG board (the French association of computer graphics).

Readers may contact the authors at Groupe de
Recherche en Infographie et Synthèse d’images, Labora-
toire d’Intelligence Artificielle, Université Paris8, 93 526
Saint-Denis, France, e-mail {boyer, jj} @ai.univ-
paris8.fr.

Table 6. N-step algorithm performances in seconds.

Max 1 2 3 4 AAS

500 0.2559 0.2256 0.1973 0.2031 0.0742
1,000 2.0088 1.7793 1.6445 1.5030 0.5605
2,000 16.1641 13.8379 12.9570 11.42 4.3555
4,000 130.3613 110.743 100.46 87.47 34.51
Percent 100 84.95 77.06 67.00 26.47

