
EUROGRAPHICS ’99 / P. Brunet and R. Scopigno
(Guest Editors)

Volume 18 (1999), Number 3

Fast Lines: a Span by Span Method

V. Boyer and J.J. Bourdin

Groupe de Recherche en Infographie et d’images
Laboratoire d’Intelligence Artificielle

Univ Paris 8
2, rue de la

93256 Saint-Denis cedex 2
FRANCE

boyer, jj@ai.univ-paris8.fr
Fax : 33.1.49.40.64.10

Abstract
Straight line’s scan conversion and drawing is a major field in computer graphics. Algorithm’s time computation
is very important. Nowadays, most of research papers suggest improvements of the DDA method that was first
presented by J. Bresenham. But other approaches exist as well like combinatory analysis and linguistic methods.
Both of them use multiple string copies that slow down the efficiency of the algorithms. This paper proposes a
new algorithm based on a careful analysis of the line segments’ properties some of them previously unused. Our
algorithm is proved significantly faster than previously published ones.

1. Introduction

One of the most important functions of graphics displays
is drawing straight lines. It is achieved by drawing a
discrete path between two given points. Although the path
is discrete, it has to be as linear as possible. The visual
aspect of the path and the speed of the algorithm are the
major qualities of scan-conversion. Bresenham’s algorithm1

is often used because it is both fast and easy to encode. It
computes the best approximations of the true line points.
The DDA method introduced by Bresenham is also used by
the major improvements of his algorithm2 3 4 5 6 7 8 9.

Here are some other approaches:

– Combinatory analysis leads to significantly different and
elegant as well algorithms10 11 12 13. This method is de-
rived from Euclid’s algorithm computing the greatest
common divisor.

– Linguistic methods14 15 lead to new presentations of lines.
Due to the cost of string copies used, these algorithms are
not faster than the previous ones.

It is possible to combine the above mentioned approaches
to get fast algorithms16 17 with good visual quality results.
Moreover it is possible to use hardware functionalities to

draw simultaneously a limited range of pixels. For exam-
ple this task is performed by the rectwrite function on SGI
computers. The same kind of performances does not exist
yet on cheap raster devices such as laser printers. But future
hardware will include some of these performances in order
to speed-up.

This paper summarizes different properties of lines and
proposes some additional ones. These properties are chosen
for the speed-up qualities (in the sense of computational ef-
fort). A new algorithm is given which uses only integer arith-
metic. Benchmarks prove that this algorithm is faster than
previous ones. The speed-up grows according to the lines’
length, 6 times faster than the quickest previous algorithm17

and 20 times than the original Bresenham version.

2. Properties of the Straight line

This section presents five important properties of straight
lines. These properties are already well-known (see for
example18 2 19 20 13 21 22 14 10 11) but our formulation makes
them clearer. These properties were chosen for the gain
in speed or the limitation on the size of the workspace.
On the discrete plane NI NI representing the raster device,
each point has two coordinates, x and y. Let P xp yp and

c The Eurographics Association and Blackwell Publishers 1999. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Boyer and Bourdin / Fast Lines: a Span by Span Method

Q xq yq be two points of the plane. The values xp, yp, xq,
yq are integers. Our purpose is to draw the line from P to Q,
i.e. to draw a “linear” path from P to Q. This path will be
mentioned as the line from P to Q. The continuous line will
refer to the line segment of the real plane.

Let the differences of coordinates be u and v:

u xq xp

v yq yp

The line has a slope that is defined by the values u and v,
written as the pair u v or the ratio v u (see Figure 1).

Q

xqu

v

q

py

y

P
xp

Figure 1: a line and its slope

Property 1 : The line from P xp yp to Q xq yq is an exact
transposition of the line from 0 0 to u v .

It means that if x y is a point of the line from 0 0 to
u v then x xp y yp is a point of the line from P to Q.

Therefore the line will only be defined by its slope u v and
the end-points of the line will not be mentioned. The u v
line will be used for “the line with slope v u”. The lines
will be restricted to the first octant u v 0 . Other lines
can be computed like simple symmetries of a line in this
octant1 16 2. In other words, we can limit our studies to the
first octant, knowing that the lines left are just transpositions.

Property 2 : Each line u v in the first octant verifies:

x 0 u !y 0 v x y line

In other words for each x there is one and only one point in
the path. The true ordinate yx RI associated to x is:

yx
vx
u

(1)

As y is an integer, it is an approximation of yx. The approx-
imation of a real number with an integer can either be the
best approximation or the lower approximation (the greatest
integer less than or equal to yx) or the upper approximation
(the smallest integer greater than or equal to yx). We use the
usual presentation yx , yx and yx (see for example16).
Let y, y and y be the corresponding approximations:

y lower yx
vx
u

(2)

y best yx
vx
u

(3)

y upper yx
vx
u

(4)

Most algorithms1 16 6 5 10 compute the best approxima-
tion. In this case, one problem remains unsolved: when the
value is half of an integer, is the rounding up more appropri-
ate than the rounding down? For example, is 3.5 closer to 4
or to 3?

Let us recall three properties suggested by Freeman18 and
summarized by Wu15 to describe the relationships between
two neighboring points of any line. The direction between
two close points is given by the Freeman code18.

Property 3 : There are at most two basic directions and these
ones can differ only by unity, modulo eight.

Property 4 : One of these values always occurs “singly”15.

Property 5 : Successive occurrences of the principal direc-
tion occurring singly are as uniformly spaced as possible.

In the first octant the directions used are always horizontal
or diagonal and are, using the Freeman’s code: 0 and 1. Note
that if x y1 and x 1 y2 are two neighboring points, the
difference y2 y1 is equal to the value of the Freeman code.

The line may be described by the set of points of the path
or by the first point and the chain code of the successive
directions.

Property 4 enables to consider a span as a subchain re-
peating the same code. Two spans are separated by one oc-
currence of the other code.

w"

w’

w

Figure 2: Three lines for slope 11, 3

Let a word be the chain code of a line. Since three differ-
ent approximations exist for a slope u v there are three dif-
ferent words. We denote w u v the chain code for the lower
approximation, w u v the chain code for the best approxi-
mation, w u v the chain code for the upper approximation.
For example, in Figure 2, the different approximations of the
(11, 3) line are presented. We have:

w 11 3 00010001001

w 11 3 01000100010

w 11 3 10010001000

c The Eurographics Association and Blackwell Publishers 1999.

Boyer and Bourdin / Fast Lines: a Span by Span Method

Note that when the slope is obvious we use the abbrevia-
tions w, w or w .

It has been noted20 15 that property 5 is “somewhat fuzzy”.
This fuzziness applies only for w , the best approximation.
The words w and w respect property 5. In other words, the
length of spans differ only by one unit. This is also true for
the best approximation even though the first span is broken
in two parts, its begin is situated at the end of the line.

As the research in computer graphics was mainly focused
on the best approximation, property 5 was generally ignored.
Using the lower approximation leads to other properties of
the line’s code chain. These properties are presented in the
following section.

3. Properties of the line word

In order to present new properties of the chain code we need
some simple operators such as append or repeat. We use the
following abbreviations:

append will denote the append function on chains:
1010 011=1010011

repeat wn is w n times repeated: 001 3 001001001
reverse rev(w) is the reverse of the chain: rev(001)=100
opposite not(w) is used to replace each letter in w by its

binary opposite: not(001)=110
letter wi is the i-th letter of w: if w=001001, w3=1 and w1=0

Property 6 : For the line u v , w, w and w are combined
words. There exist small subchains and and:

w w lower best commutativity

w w best upper commutativity

rev

For example with the line (11, 3), =01.

Property 7 : For the line u v , the length n of (see prop-
erty 6) respects the condition:

vn u 2 modulo u 0

For the slope (11, 3), that is: 3n 5 modulo u 0 and n=2
or 13 or 9...

Therefore the choice of the approximation - during line’s
computation - is not bound to the type of the approximation
needed for the drawing. In this paper we focused on the word
w. The word w can be deduced by simple translation.

Property 8 : The ku kv line is k times the u v line.

w ku kv wk u v

e.g.:

w 22 6 w 11 3 w 11 3

w 22 6 0001000100100010001001

Property 9 : If g gcd u v (greatest common divisor) then
the line of slope u v is g times the line u g v g .

w u v wg u g v g

This property is a significant consequence of property 8. It
enables to work on a smaller word and repeat its pattern. As
noted by Angel and Morrison6 the average gcd of integers
in range 1 to 1024 is almost 5. The computation of only one
fifth of the line clearly speeds up 5 times the algorithm.

From now on the values u and v are considered reduced:

gcd u v 1

Property 10 : Inner symmetry. The u v line word re-
spects:

w1 0

wu 1

wi wu 1 i i 1 u

This property is used by Rokne et al.5 in order to speed-up
their algorithm. But their formulation is not completely true
because they use the best approximation and the rounding
problem (up or down) of the numbers in n 0 5 remains. For
the lower approximation the property 10 has been proved by
Boyer et al.23.

Property 11 : Hexadecant symmetry. The u v line word
respects:

w u v not w u u v

For example:

w 11 8 01101110111

u v 11 8 3

w 11 3 10010001000

not w 11 3 01101110111

We give now a formal proof of this property. Let x yx) be
a point of the lower u v line and x yx be a point of the
upper u u v line. We get:

yx
vx
u

yx
u v x

u

The sum yx yx depends only on x:

yx yx
vx
u

u v x
u

yx yx
vx
u

ux
u

vx
u

yx yx x
vx
u

vx
u

but

vx
u

vx
u

c The Eurographics Association and Blackwell Publishers 1999.

Boyer and Bourdin / Fast Lines: a Span by Span Method

so we get

yx yx x

and

yx 1 yx 1 x 1

Since yx, yx 1, yx 1 and yx are integers and since the path
is made of neighboring points, we have:

if yx yx 1 then yx 1 1 yx

if yx 1 yx 1 then yx 1 yx

Therefore the associated code values differ.

This property is important because it enables to divide by
2 the workspace. Furthermore the next property shows that
it is possible to work only with the lower approximation.

Property 12 : If the slope is u v , then we have:

w1 0 w1 1

wu 1 wu 0

wi wi i 1 u

We give now the proof of this property. A diagonal move oc-
curs each time the continuous line crosses the grid. This is
valid for both lower and upper approximations. The excep-
tions occur when the division vx u has no fractional part
(is an integer). But since gcd u v 1, and x 0 u , there
are only two such exceptions: x 0 and x u. The corre-
sponding letters are treated separately.

Therefore if u 2v, the word w u v can be computed as:

w1 u v 0

wu u v 1

wi u v not wi u u v i 1 u

The workspace is reduced to the first hexadecant:

0 v 2v u

In this hexadecant, the spans are always horizontal and sep-
arated by diagonal moves (see figure 3). Let us focus now on
consequences of property 5. As indicated above, the length
of spans differ only by a single unit. As the spans are sep-
arated by diagonal moves (occurring singly) and as the first
move is the beginning of a span and the last move is a di-
agonal move, there are as much spans as there are diagonal
moves:

nb spans v

Property 13 : The average length of spans is:

av lgt
u v

v

That is the ratio of horizontal moves divided by the number
of spans. As this value is not an integer (since gcd u v 1)
there are two different lengths: u v v and u v v .
We define the short spans as the spans whose length is the

lower approximation and the long spans as the upper one.
Figure 3 presents short and long spans along the line (97,
31).

short lgt
u v

v

long lgt
u v

v

Long spans

Short spans

Figure 3: a part of the (97, 31) line

Property 14 : The numbers of short (nb_s) and long (nb_l)
spans are precisely defined:

nb l u v modulo v u%v

nb s v u%v

As in C, we use the abbreviation % for the modulo.

To understand these equations one can imagine filling
each span as if it was a short span. The number of horizontal
moves left unused nb hml is:

nb hml u v v
u v

v
so,

nb hml u v modulo v u%v

As the length of spans differ only by a single unit, the
horizontal moves left are distributed between long spans.
The number of horizontal moves left is therefore equal to
the number of long spans. Now we can dispose these spans
along the line.

Property 15 : The short and long spans define precisely the
v nb s line.

Note that v nb s nb l.

For example:

w 11 3 00010001001

short spans 00

long spans 000

nb s 3 11%3 1

w 3 1 001

c The Eurographics Association and Blackwell Publishers 1999.

Boyer and Bourdin / Fast Lines: a Span by Span Method

Let Sm w be the function that turns each letter of w into
a span with the separator:

Sm 0 0m 11

Sm 1 0m1

Property 15 may be reformulated as:

w u v Sm w v v u%v

m
u v

v

4. Previous algorithms

Most of the line drawing algorithms take advantage of one
or more of these properties. This section summarizes the re-
lations between different algorithms and these properties.

First of all, Bresenham’s algorithm1 is obviously based on
properties 1 and 2. In his paper Bresenham presented prop-
erty 3.

Brons14, Wu15, Berstel11, Troesch13 and Reveilles12

worked on the properties of the chain code. Therefore their
algorithms use most of line word’s properties presented
above. Both multiple recursions and multiple string copies
slow down the computing. That is why compared to Bresen-
ham’s, these algorithms are not faster.

Castle and Pitteway’s algorithm10 uses Euclid’s algorithm
and property 15. In their algorithm subtractions are used for
the dividing operations.

Angel and Morrison6 presented and used property 9. They
estimated a speedup factor of 5 when long lines are drawn
and evaluated it to 3 by software simulation. But the cost of
gcd calculation remains predominant.

The run length slice algorithms, presented by
Bresenham16 and Pitteway et al.24, mainly use proper-
ties 5 and 14. Another algorithm17 uses the spans called
“steps”. Since some hardware presents the possibility to
draw a limited range of pixels with a single subroutine,
these algorithms are particularly efficient. The first part of17

uses property 15, while the second part uses Bresenham’s
algorithm to compute spans’ positions.

In recent algorithms, the double-step5 , triple-step8 and
N-step7 are Sproull’s derivation algorithm’s adaptations3 .
Rokne et al. divided the octant in two parts. Two differ-
ent formulas are used according to the hexadecant involved.
The multiple step principle is to compute yx n and deduce
from its value the values of intermediate yx i. For example,
in the first hexadecant, yx 2 yx implies that yx 1 yx.
This property is useful to speed up the Bresenham’s algo-
rithm but even if a symmetry (property 10) is used (Rokne
et al. algorithm5), it doesn’t reduce computation time signif-
icantly.

Since properties 11 and 12 are new ones, our algorithm
presented hereafter is the first one to take advantage of them.

5. The new algorithm

In this section we present our new algorithm. Its advantage
comparing to previous ones is the extremely short time com-
putation and display as well of drawing straight lines. The
lower approximation was chosen for its rapidity. This choice
implies no further consequences as the drawing keeps good
visual properties. The only exception is the case where v is
very small relative to u (for example u 100, v 1). But
in this case, all known algorithms lead to partially degen-
erated lines: without anti-aliasing process anyone could see
the discontinuity. Moreover, as noted in property 6, the best
approximation line is a translation of the lower one.

Furthermore a simple anti-aliasing consists in the draw-
ing of two pixels with attenuated colors for each point of the
path25. The choice of the pixels to draw is easy while using
lower approximation: the pixels drawn are the current one
and its vertical up neighbor. With the best approximation,
sometimes the second pixel would be up and some other
times it would be down. Our algorithm uses also an adap-
tation of the double-step algorithm5 to the lower approxima-
tion. Since u 2v, there are only three possibilities for the
path following a point x y (see Figure 4). These possibili-
ties are:

A horizontal move, horizontal move
B horizontal move, diagonal move
C diagonal move, horizontal move

BA C

Figure 4: The three possible moves

The error made when choosing a point P for the line is
estimated by the following error function:

error x y vx u y 1

if error x y 0 then the upper point x y 1 is a point of
the line and x y is not. This leads to:

if error x 2 y 0 (1)
then case A
else if error x 1 y 0 (2)
then case B
else case C

During the loop, for a current point x y the value of
the error computed is:

error x 2 y

c The Eurographics Association and Blackwell Publishers 1999.

Boyer and Bourdin / Fast Lines: a Span by Span Method

The sign of is tested at line (1) and the sign of v at
line (2).

Our algorithm expects an existing array clr of value 1.
This array is the second argument of the rectwrite function.

Our algorithm builds an array slope with the lengths of the
successive spans. For example if the line to draw is (11,3),
the long spans are made of three 0 and short spans are made
of two 0, the array slope will be {3,3,2} when completed. As
in the C language the first value of the array is slope[0].

The new algorithm is given by a function quickline (see
figure 5). It is composed of three parts. The first part com-
putes intermediate values used by the line functions. This is
an application of properties 9 and 15. The second part of the
algorithm (the line and line2 functions calls) fills the slope
array. This is close to Rokne and al.5 algorithm with an adap-
tation to the lower approximation and to properties 11 and
12. It fills simultaneously the beginning and the end of the
array. The third part effectively draws the line.

The rectwrite function, used for the drawing, performs the
writing of a limited range of pixels. The first parameter N is
the number of pixels to draw, the second parameter is an
array of entries of the color Look-Up-Table. The i-th pixel
will be drawn with the i-th color in the array, for all i from 0
to N 1. Here the array will be filled with 1s.

The rectwrite function does not yet permit the drawing of
vertical or diagonal sets of pixels. Adding these two possi-
bilities should improve our algorithm.

void quickline(xp, yp, u, v) {
g = gcd (u, v);
u = u / g;
v = v / g;
long = u / v; /*length of long*/
short = long - 1; /*and of short spans*/
nb_l = u % v; /*number of long spans*/
if (v > 2*nb_l)
line2(v, nb_l, long, short, slope);

else
line (v, v-nb_l, long, short, slope);

for (; g != 0 ; g--) {
for (step = 0; step < v; step++) {
cmov2i (xp, yp);
rectwrite (slope [step], clr);
xp += slope [step];
yp++;

}
}

}

Figure 5: the quickline function

The algorithm works for the 0 2v u case. Proper-
ties 1, 2 and 12 show how to adapt it to any line of the plane.

Both algorithms are given in a C-like language.

In practice the code of functions line and line2 (see fig-
ures 6 and 7) is slightly different: to avoid multiple copies
at the same location, the cpt 0 tests (lines (1) and (2)) be-
comes cpt>0 and the case where cpt=0 is treated separately.
In this case, the number of spans to write depends on the
parity of cpt.

void line (u, v, long, short, slope) {
incH = v * 2;
incD = incH - u;
delta = incD + v;
slope [0] = long;
slope [u - 1] = short;
x = 1;
cpt = (u - 2) / 4;
for (; cpt 0; cpt--) { /* (1) */
if (delta < 0) { /* case A */
slope [x] = long;
slope [u - ++x] = long;
slope [x] = long;
slope [u - ++x] = long;
delta += incH;

}
else {
if (delta < v) { /* case B */

slope [x] = long;
slope [u - ++x] = long;
slope [x] = short;
slope [u - ++x] = short;

}
else { /* case C */

slope [x] = short;
slope [u - ++x] = short;
slope [x] = long;
slope [u - ++x] = long;

}
delta += incD;

}
}

}

Figure 6: first hexadecant

6. Benchmarks

A software simulation was used to test the speed of this algo-
rithm. As previously noted6 5 the simple software simulation
is not particularly useful because in practice these functions
would be realized at the chip level. Moreover the results de-
pend on the quality of the code generated by the compiler.
However the ratio between the different algorithms remains
constant. As in other benchmark simulations6 5 the assump-
tion of equal likelihood of all line segments within a large
frame buffer is unrealistic but also inevitable.

Every line in the corresponding range is computed. For
example with size=500, for all u belonging to [1, 500] and
for all v in [1,v 2], the u v line is computed. Where the

c The Eurographics Association and Blackwell Publishers 1999.

Boyer and Bourdin / Fast Lines: a Span by Span Method

void line2 (u, v, long, short, slope) {
incH = v * 2;
incD = incH - u;
delta = incD + v;
slope [0] = long;
slope [u - 1] = short;
x = 1;
cpt = (u - 2) / 4;
for (; cpt 0; cpt--) { /* (2) */
if (delta < 0) { /* case A */
slope [x] = short;
slope [u - ++x] = short;
slope [x] = short;
slope [u - ++x] = short;
delta += incH;

}
else {
if (delta < v) { /* case B */
slope [x] = short;
slope [u - ++x] = short;
slope [x] = long;
slope [u - ++x] = long;

}
else { /* case C */
slope [x] = long;
slope [u - ++x] = long;
slope [x] = short;
slope [u - ++x] = short;

}
delta += incD;

}
}

}

Figure 7: second hexadecant

rectwrite function could not draw the range of pixels (diago-
nal or vertical spans), it was simulated. The total of comput-
ing time for all the lines of the range has been measured.

The benchmarks were realized on three computers: SGI
Elan, SGI O2 and Digital Alpha 433. The values given in
table 1 are the average of the three computer times obtained.

Finally the % value represents the ratio between the cur-
rent algorithm and Bresenham’s algorithm.

A large range of sizes has been tested. Since the drawing
of lines does not occur only on CRT devices (where the max-
imum length remains 4096) but also on laser printers or slide
plotters (where the number of dots is significantly greater) it
was important to test extremely long lines.

Discussion: The gcd algorithm is not as good as expected.
In fact, the time to compute the gcd is long and slows down
the entire process. To solve this problem it would be easy
to build an array of gcd values. If the lines are within a
limited range the array size is also limited. Unfortunately,
even within poor CRT device range (1024) the memory
used would be 4 MB and would exceed this value for larger

ranges. Therefore this solution can not be used. The slow
down is mainly due to the fact that, even if the average value
of the gcd is 5, there are few numbers with gcd 1. Our tests
showed that more than 60% of pairs of numbers u v in a
given range have a gcd of 1. Moreover even with an adap-
tation of Euclid’s algorithm, the computing of the gcd value
is very long when the gcd is 1. An array where the values
would be the answer of the test “gcd 1” would be a good
compromise. We intend to make tests with a solution based
on the concept of memo-functions for the gcd.

The span algorithm (see17 or16) gives an average speed-up
of 4.

The double-step technique5 leads to an average speed up
of 30%. Recall that in our concept, the double-step applies
easily: each hexadecant is treated as the first hexadecant via
property 12.

Finally, the resulting algorithm is proved faster than the
previous ones. The speed-up increases proportionally to the
length of lines to approximately 20 for very long lines.

This result may be compared to the global result of
double-step and symmetry algorithm by Rokne et al.5. The
authors get a speedup factor of roughly 3 over the original
Bresenham version. Here this result is more than 6 times su-
perseded.

7. Conclusion

A new algorithm for the scan-conversion of straight lines
has been presented. It is proved to be at least 6 times faster
than previous algorithms. We think that such an improve-
ment should be implemented on hardware for any computer
graphics device. Moreover the algorithm and the choices
presented lead to a very fast anti-aliasing of lines. Two other
improvements would speed-up slightly the results: the N-
steps7 or at least triple-step8 techniques and the use of a
Boolean array of “gcd 1” values.

References

1. J.E. Bresenham. Algorithm for computer control of a digital
plotter. IBM System Journal, 4(1):25–30, 1965.

2. H. Freeman. Computer processing of line drawing images.
ACM Computing Surveys, 6(1):57–97, 1974.

3. R.F. Sproull. Using program transformations to derive line-
drawing algorithms. ACM Transactions on Graphics, 1:259–
273, 1982.

4. M.L.P. van Lierop, C.W.A.M. van Overveld, and H.M.M.
van de Wetering. Line rasterization algorithms that satisfy the
subset line property. CVGIP, 41:210–228, 1988.

5. J.G. Rokne, B. Wyvill, and X. Wu. Fast line scan-conversion.
ACM Transactions on Graphics, 9(4):376–388, October 1990.

6. E. Angel and D. Morrison. Speeding up Bresenham’s algo-
rithm. IEEE Computer Graphics & Applications, 11:16–17,
November 1991.

c The Eurographics Association and Blackwell Publishers 1999.

Boyer and Bourdin / Fast Lines: a Span by Span Method

Sizes Bresenham’s by Spans gcd + Spans id + double step new algorithm

500 16,46 4,06 2,30 2,36 1,81

1000 132 31 17 15 10

2000 1053 248 135 107 66

4000 8433 1966 1058 787 451

6000 28458 6629 3575 2576 1432

10000 131923 30576 16394 11631 6279

% 100 23,2 12,4 8,8 4,8

Table 1: Results of the computation time

7. G. Gill. N-Step Incremental Straight-Line Algorithms. IEEE
Computer Graphics and Applications, pages 66–72, May
1994.

8. P. Graham and S.S. Iyengar. Double and triple step incremen-
tal generation of lines. In IEEE Computer Graphics & Appli-
cation, pages 49–53, May 1994.

9. Y.P. Kuzmin. Bresenham’s line generation algorithm with
built-in clipping. Computer Graphics forum, 14(5):275–280,
1995.

10. C.M.A. Castle and M.L.V. Pitteway. An application of Eu-
clid’s algorithm to drawing straight lines. In Fundamental
Algorithms in Computer Graphics, pages 135–139. Springer-
Verlag, 1985.

11. J. Berstel. Mots, es offerts MP. Sc ger, chap-
ter T de droites, fractions continues et morphismes

1990.

12. J.P. Reveilles. Droites et fractions continues. Techni-
cal Report R90/01, ULP d’Informatique, Stras-
bourg, France, Janvier 1990.

13. A. Troesch. de l’algorithme
d’Euclide et reconnaissance de segments. Theoretical Com-
puter Science, 115:291–319, 1993.

14. R. Brons. Linguistic methods for description of a straight line
on a grid. CGIP, 3:48–62, 1974.

15. L. Wu. On the chain code of a line. IEEE Transactions on
Patterns analysis and machine intelligence, PAMI-4(3):347–
353, 1982.

16. J.E. Bresenham. Run length slice algorithm for incremen-
tal lines. In Fundamental Algorithms in Computer Graphics,
pages 59–104. Springer-Verlag, 1985.

17. F.P. Chalopin and J.J. Bourdin. Straight lines: a step by step
method. In Winter School in Computer Graphics, Plzen, feb
1996.

18. H. Freeman. Boundary encoding and processing. In Picture
Processing and Psychopictorics, pages 241–266. B.S. Lipkin
and A. Rosenfeld, Eds, New-York: Academic, 1970.

19. M.L.V. Pitteway. The relationship between Euclid’s algorithm
and run-length encoding. In Fundamental Algorithms in Com-
puter Graphics, pages 105–112. Springer-Verlag, 1985.

20. T. Pavlidis. Structural Pattern Recognition. New-York:
Springer-Verlag, 1977.

21. P.L. Gardner. Modifications of Bresenham’s algorithm for dis-
plays. IBM Tech. Disclosure Bull, 18:1595–1596, 1975.

22. M. Luby. Grid geometries which preserve properties of the
euclidean geometry: A study of graphics line drawing algo-
rithms. In R.A. Earnshaw editor, editor, Theoretical Founda-
tions of Computer Graphics, pages 397–432. Springer-Verlag,
1987.

23. V. Boyer, J. Tayeb, and J.-J. Bourdin. Une du
de droites. In I.A.C : Intelligence Artificielle et Complex-

, pages 142–149, February 1997.

24. M.L.V. Pitteway and A.J.R. Green. Bresenham’s algorithm
with run line coding shortcut. The Computer Journal,
25(1):114–115, 1982.

25. J.D. Foley, A. Van Dam, S. Feiner, and J. Hughes. Computer
Graphics, Principles and Practice. Addison Wesley, 1990.

c The Eurographics Association and Blackwell Publishers 1999.

